AP Calculus BC

Unit 1 – Limits and Continuity

AP Calculus BC - Worksheet 1

1) $\lim_{x \to c} \frac{x^4 - x^3 + 1}{x^2 + 9}$	2) $\lim_{x \to -4} (x+3)^{1998}$	3) $\lim_{x \to 1} \left(x^3 + 3x^2 - 2x - 17 \right)$
4) $\lim_{x \to \frac{1}{2}} (\operatorname{int} x)$	$5) \lim_{x \to -2} \left(\frac{1}{x+2} \right)$	6) $\lim_{x \to 0} \frac{(4+x)^2 - 16}{x}$
7) $\lim_{x \to 0} \frac{5x^3 + 8x^2}{3x^4 - 16x^2}$	8) $\lim_{x \to 0} \frac{\sin 2x}{x}$	9) $\lim_{x \to 0} \frac{\sin^2 x}{x}$
10) $\lim_{x \to 2} \frac{x+1}{x^2 - 4}$	11) $\lim_{x \to 3} \frac{x^2 - 9}{x + 3}$	12) $\lim_{x \to 0^-} \frac{x}{ x }$

Determine the limit. (Feel free to use L'Hopital's Rule)

For #13 and 14, use the graph of each function below to determine the indicated value.



15)	Assume that $\lim_{x \to 4} f(x) = 0$ and $\lim_{x \to 4} g(x) = 3$. Determine each limit.						
	a) $\lim_{x \to 4} (g(x) + 3)$ b) $\lim_{x \to 4} \frac{g(x)}{f(x) - 1}$ c) $\lim_{x \to 4} g^2(x)$						
16)	(3-x, x < 2)						
	For $f(x) = \begin{cases} 3-x, & x < 2\\ \frac{x}{2}+1, & x > 2 \end{cases}$, evaluate $\lim_{x \to 2} f(x)$.						
17)							
	3-x, x < 2						
	For $f(x) = \begin{cases} 2, & x = 2, \text{ evaluate } \lim_{x \to 2} f(x) \end{cases}$.						
	For $f(x) = \begin{cases} 3-x, & x < 2\\ 2, & x = 2, \text{ evaluate } \lim_{x \to 2} f(x).\\ \frac{x}{2}, & x > 2 \end{cases}$						
18)	For $f(x) = \begin{cases} \sqrt{1-x^2}, \ 0 \le x < 1 \\ 1, & 1 \le x < 2, \ \text{determine the values of } c \text{ for which } \lim_{x \to c} f(x) \text{ exists.} \\ 2, & x > 2 \end{cases}$						
	For $f(x) = \begin{cases} 1, & 1 \le x < 2, \text{ determine the values of } c \text{ for which } \lim f(x) \text{ exists.} \end{cases}$						
	$\begin{bmatrix} 2, & x > 2 \end{bmatrix}$						
19)	For $f(x) = \begin{cases} \sin x, & -2\pi \le x < 0\\ \cos x, & 0 \le x \le 2\pi \end{cases}$, at what values of c does $\lim_{x \to c} f(x)$ exist?						
20)	Find $\lim_{x\to 0} \left(x\sin\frac{1}{x}\right)$ numerically (Graphing Calculator Permitted).						

AP Calculus BC – Worksheet 2

For #1-2, find (a) $\lim_{x\to\infty} f(x)$ and (b) $\lim_{x\to\infty} f(x)$. (c) Identify any horizontal asymptotes.

$\lambda + 5$ λ	1) $f(x) = \frac{3x^3 - x + 1}{x + 3}$	$2) f(x) = \frac{e^x}{x}$
-------------------------	--	---------------------------

For #3-4, Evaluate each limit.

3) $\lim_{x \to 2^+} \frac{1}{x-2}$	4) $\lim_{x \to -3^+} \frac{x}{x+3}$
5) $\lim_{x \to \infty} \frac{3 - 9x + \sin 4x}{9x + \cos 4x}$	$6) \lim_{x \to \infty} \left(5xe^{2x} \right)$

For #7-8, (a) find any vertical asymptotes of the graph of f(x). (b) Describe the behavior of f(x) to the left and right of each vertical asymptote.

$7) f(x) = \frac{x+3}{x-2}$	8) $f(x) = \frac{-2}{x^2 - 25}$	

For #9-10, describe the end behavior of the graph of f(x).

9) $f(x) = \frac{x-2}{2x^2+3x-5}$	10) $f(x) = \frac{3x^2 - x + 5}{x^2 - 4}$

Γ	11)	Sketch a graph of a function, $f(x)$ that satisfies all of the stated conditions:								
		$\lim_{x \to -\infty} f(x) = 0$	$\lim_{x\to 1^{-}} f(x) = 4$	$\lim_{x\to 1^+} f(x) = -2$	f(1) = 0					
		$x \rightarrow -\infty$	$x \rightarrow l$	$x \rightarrow 1$						
		$\lim_{x \to 4^{-}} f(x) = -\infty$	$\lim_{x\to 4^+} f(x) = \infty$	$\lim_{x\to\infty} f(x) = 2$						
		$x \rightarrow 4^{-2}$	$x \rightarrow 4^+$	$x \rightarrow \infty$ ()						

Continuity

Show (THREE STEPS) that each of the following functions is either continuous or discontinuous at the given value of *x*.

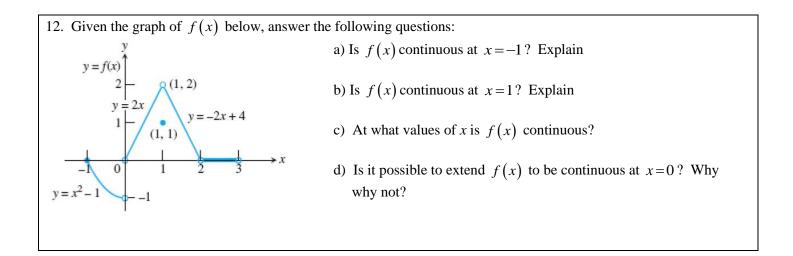
1. $f(x) = x + 5$ at $x = 1$	2. $f(x) = \frac{3x-1}{2x+6}$ at $x = -3$				
3. $f(x) = \frac{x^2 - 16}{x - 4}$ at $x = 4$	4. $f(x) = \frac{x^2 - 25}{x + 5}$ at $x = 5$				

Give the open interval(s) on which the function is continuous.

5. $f(x) = x^2 + 2$	$6. f(x) = \frac{1}{x}$
7. $f(x) = \frac{x^2 + 1}{x - 1}$	8. $f(x) = \frac{3x-5}{2x^2 - x - 3}$

Each of the following has a removable discontinuity. Find an extended function that is continuous at this discontinuity.

9. $f(x) = \frac{x^2 - 4}{x - 2}$	10. $f(x) = \frac{x^2 - 5x + 6}{x - 3}$



AP Calculus BC - Worksheet 4

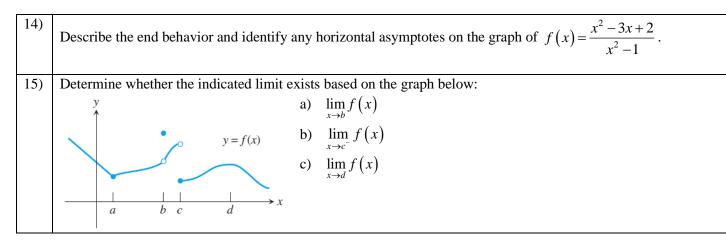
1	State whether the function $f(x) = \begin{cases} x^2 - 2x + 1, & x < -1 \\ x + 2, & -1 \le x \le 2 \end{cases}$ is continuous at the given x-values. Justify your $2^x, x \ge 2$								
	answers. a) $x=-1$ b) $x=2$								
2	State whether the function $f(x) = \begin{cases} x - x^2, & x < 1 \\ x, & x = 1 \\ \ln x, & x > 1 \end{cases}$ is continuous at $x = 1$. Justify your answers.								
3	State whether the function $f(x) = \begin{cases} \cos x, & x \le \frac{\pi}{2} \\ \tan x, & \frac{\pi}{2} < x < \pi \\ \sin x, & x \ge \pi \end{cases}$ is continuous at the given x-values. Justify your answers.								
	a) $x = \frac{\pi}{2}$ b) $x = \pi$								
4	Find the value of k that makes $f(x) = \begin{cases} 3 - x^2, & x \le 4 \\ x + k, & x > 4 \end{cases}$ a continuous function.								
5	For each function, identify the type of discontinuity and where it is located. a) $f(x) = \frac{x}{x+1}$ b) $g(x) = \frac{x+2}{x^2-2x-8}$ c) $h(x) = \frac{x^2+2x-3}{x+3}$								
6	d) $f(x) = \sec 2x$ for $0 \le x \le 2\pi$ e) $f(x) =\begin{cases} x^2 + 3, \ x \le -1 \\ 5x - 2. \ x > -1 \end{cases}$ The function <i>f</i> has the properties indicated in the table below. Which of the following must be true?								
	b $\lim_{n \to b} f(x) = \lim_{n \to b^+} f(x) = f(b)$								
	2 5 5 8								
	3 1 1 1								
	(A) f is continuous at $x = 1$. (B) f is continuous at $x = 2$.								
	(C) f is continuous at $x = 3$. (D) None of the above.								

AP Calculus BC – Worksheet 5

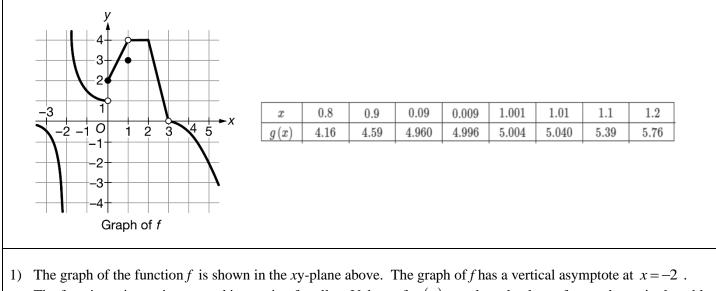
1)	Use the Intermediate Value Theorem to show that $f(x) = x^3 + x$ takes on the value 9 for some x in [1,2].								
2)	Show that $g(t) = \frac{t}{t+1}$ takes on the value 0.499 for some t in [0,1].								
3)	Show that $f(x) = x^3 + 2x + 1$ has a solution in the interval $[-1,0]$.								
4)	Selected values of a continuous function f are given in the table below. What is the fewest possible number of zeros of f in the interval $[0,5]$?								
	f(x) 1 -5 -4 2 -10 -15								

Evaluate the limit if it exists.

$5) \lim_{x \to 4} \left(3 + \sqrt{x}\right)$	6) $\lim_{x \to 1} \frac{5 - x^2}{4x + 7}$	7) $\lim_{x \to -1} \frac{3x^2 + 4x + 1}{x + 1}$
8) $\lim_{t \to 9} \frac{\sqrt{t-3}}{t-9}$	9) $\lim_{h \to 0} \frac{2(a+h)^2 - 2a^2}{h}$	10) $\lim_{x \to \infty} \frac{9x^2 - 4}{2x^2 - x}$
11) $\lim_{x \to 3} \frac{x^2 - 4x - 5}{x - 3}$	12) $\lim_{x \to 0^-} \frac{ x }{x}$	13) $\lim_{x \to 0} \frac{\sin x}{x+1}$



16)Determine if
$$f(x) = \begin{cases} |x^3 - 4x|, & x < 1 \\ x^2 - 2x - 2, & x \ge 1 \end{cases}$$
 is continuous at $x = 1$.17)Sketch a single graph of a function that satisfies all of the given conditions: $\lim_{x \to \infty} f(x) = 3$, $\lim_{x \to -\infty} f(x) = \infty$, $\lim_{x \to 3^+} f(x) = \infty$, $\lim_{x \to 3^-} f(x) = -\infty$ 18)Determine if $f(x) = \frac{2x+1}{x^2 - 2x + 1}$ has any discontinuities. State whether the discontinuities are removable, jump, or infinite.



- 1) The graph of the function f is shown in the xy-plane above. The graph of f has a vertical asymptote at x = -2. The function g is continuous and increasing for all x. Values of g(x) at selected values of x are shown in the table above.
 - a) Using the graph of f and the table for g, estimate $\lim_{x\to 1} (2f(x) + 3g(x))$.
 - b) For each of the values a = -2, a = 2, and a = 3, determine whether or not *f* is continuous at x = a. In each case, the three-part definition of continuity to justify your answer.
 - c) Find the value of $\lim_{x\to 0} f(f(x))$ or explain why the limit does not exist.

2) The function, Y(t), is a piecewise-defined function defined by:

$$Y(t) = \begin{cases} 10e^{0.05t} & \text{for } 0 \le t \le 10\\ f(t) & \text{for } 10 < t \le 12\\ \frac{600}{20 + 10e^{-0.05(t-12)}} & \text{for } t > 12 \end{cases}$$

where f(t) is a continuous function such that f(12) = 20.

a) Find $\lim_{t\to\infty} Y(t)$.

- b) Is the function Y(t) continuous at t = 12. Justify your answer.
- c) The function Y is continuous at t = 10. Is there a time t, for 0 < t < 12, at which Y(t) = 18. Justify your answer.